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We investigate the synchronization transition of the modified Kuramoto model where the oscillators form a
scale-free network with degree exponent �. An oscillator of degree ki is coupled to its neighboring oscillators
with asymmetric and degree-dependent coupling in the form of Jki

�−1. By invoking the mean-field approach,
we find eight different synchronization transition behaviors depending on the values of � and �, and derive the
critical exponents associated with the order parameter and the finite-size scaling in each case. The synchroni-
zation transition point Jc is determined as being zero �finite� when ���−2 ����−2�. The synchronization
transition is also studied from the perspective of cluster formation of synchronized vertices. The cluster-size
distribution and the largest cluster size as a function of the system size are derived for each case using the
generating function technique. Our analytic results are confirmed by numerical simulations.
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I. INTRODUCTION

Synchronization of oscillations is one of the fundamental
nonlinear phenomena in biology, physics, chemistry, com-
munication science, and many other branches of science and
engineering �1�. Recently, the dynamics of synchronization
of oscillators located at each vertex in complex networks has
attracted much attention. That is because the small-world
feature of complex networks is closely related to their syn-
chronizability. By the small-world feature, we mean that the
average separation �d� between a pair of vertices scales at
most �d�� ln N, where N is the number of vertices in the
system. It was shown �2,3� that the stability of a completely
synchronized state is significantly enhanced in the small-
world network model introduced by Watts and Strogatz �4�,
compared with random networks. However, such a feature is
not observed in scale-free �SF� networks. SF networks are
the networks that exhibit a power-law degree distribution
Pd�k��k−� and the degree k is the number of edges con-
nected to a given vertex �5�. In SF networks, the heteroge-
neity in the degree distribution suppresses their synchroniz-
ability in a completely synchronized state �6�. Thus, it was
desired to introduce a dynamic model �7� that prompts SF
networks to be more synchronizable. Moreover, it was
shown �8,9� that synchronizability is more enhanced in
weighted complex networks.

The dynamics of synchronization is described by various
forms of coupled equations. A linearly coupled model is
probably the simplest one. In the model, N oscillators are
coupled when they are connected via edges. The coupling
constant is normally symmetric; however, it is not necessar-
ily symmetric to achieve a better synchronizability. This case
can happen in SF networks: It was shown recently �7� that
the synchronizability becomes maximum when information
flow diffuses and reaches a uniform stationary state over the
entire system. Here, the mapping from synchronization dy-
namics to information flow can be naturally introduced, be-
cause the linearly coupled equation is nothing but the diffu-
sion equation. It was shown �7� that the uniform-stationary

state can be reached by introducing asymmetric and
weighted coupling strength between a pair of vertices or os-
cillators.

To be specific, the dynamic model with the asymmetric
coupling strength is written as

d�i

dt
= f��i� −

J

ki
1−��

j=1

N

aij�h��i� − h�� j�� �1�

for i=1, . . . ,N. Here, �i is the phase of an oscillator located
at vertex i, f��� describes the dynamics of an individual
oscillator, and J is the overall coupling strength. ki is the
degree of vertex i, and aij is an element of the adjacent
matrix, which is 1 if vertices i and j are connected and 0
otherwise. h��i� is the output function and takes a form of
h��i�=�i for the linear case. It is noteworthy that the cou-
pling strength of Eq. �1� is asymmetric and weighted due to
the factor 1 /ki

1−� unless �=1. When ��0, vertices with a
large degree can influence other vertices significantly on
regulating phases due to their large numbers of connections;
on the other hand, when ��0, the influence is reduced. It
was found �7� that the system is most synchronizable when
�=0, irrespective of the value of the degree exponent of a
given SF network.

In this paper, we study a different issue of synchronization
problems: the behavior of the synchronization transition
from a desynchronized to a synchronized state near the criti-
cal point. For this purpose, we use the Kuramoto model �10�
with modified coupling strength as appears in Eq. �1�: that is,

d�i

dt
= �i −

J

ki
1−��

j=1

N

aij sin��i − � j� . �2�

The oscillators are located at each vertex i=1, . . . ,N of a SF
network with degree exponent �. Here, �i is the natural fre-
quency of the ith oscillator selected from the Gaussian dis-
tribution g���=e−�2/2 /	2�. We find that the modified Kura-
moto dynamic model displays a very complex and rich
behavior in the space of the two tunable parameters �� ,��.
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The synchronization transition from a desynchronized to a
synchronized state occurs at the critical point Jc. For small
J�Jc, the coupling strength is so weak that an individual
vertex maintains its own phase different from others; there-
fore, the entire system is desynchronized. As the coupling
strength J increases, a cluster of vertices is more likely to be
coupled, to be in a common or almost the same phase, and
thus form a cluster of synchrony. The size of such clusters
becomes diverse as the coupling strength J increases. At the
critical point Jc, the system reaches a self-organized state and
the cluster-size distribution follows a power law

n�s� � s−	 �3�

in the thermodynamic limit. For J
Jc, the power-law behav-
ior no longer holds and the entire system is synchronized.

The order parameter of the synchronization transition is
defined as

rei� =
1

N
�
i=1

N

ei�i. �4�

In the synchronized state, the phases �i of each vertex are
narrowly distributed around an average phase �. The ampli-
tude r of the order parameter has a finite value; on the other
hand, r
0 in the desynchronized state. Thus, the exponent �
associated with the order parameter is defined via the relation

r � 
�, �5�

where 
= �J−Jc� /Jc. In finite-size systems, the order param-
eter is described in terms of a scaling function as

r � N−�/���
N1/�� . �6�

In recent works �11,12�, the nature of the transitions and
the finite-size scalings have been studied for the case of �
=1. In this work, we determine the order parameter and the
size distribution of synchronized clusters for general � using
the mean-field approach and the generating function tech-
nique. Moreover, we construct a finite-size scaling function
for the order parameter and determine the exponent �. Even
for a simple extension of ��1, we find that the obtained
result is very rich. There exist eight distinct transition behav-
iors depending on the values of � and �. Therefore, the result
can be helpful in understanding diverse dynamic phenomena
arising on SF networks.

The paper is organized as follows: In Sec. II, we first
introduce and apply the mean-field approach to the dynamic
equation �2�. We construct a self-consistent equation for a
local field and determine the order parameter. Next, the criti-
cal point is determined and the behavior of the order param-
eter near the critical point is obtained in Sec. III. The size
distribution of synchronized clusters and the largest cluster
size at the critical point are solved in Secs. IV and V, respec-
tively. The finite-size scaling analysis for the order parameter
is performed and the results are checked numerically in Sec.
VI. A summary and discussion follow in Sec. VII.

II. ORDER PARAMETER EQUATION

In this section, we analyze the modified Kuramoto equa-
tion �2� in the framework of the mean-field approach by con-

structing a self-consistent equation for a local field. To pro-

ceed, we define r̄i and �̄i as the amplitude and phase of the
local field at vertex i, respectively, via

r̄ie
i�̄i =

1

ki
�
j=1

N

aij�ei�j�t, �7�

where �¯�t denotes a time average. Then, Eq. �2� is rewritten
in terms of the local field as

d�i

dt
= �i − Jr̄iki

� sin��i − �̄i� . �8�

Here we ignore a term accounting for temporal fluctuations
derived in �13�. The term can yield a different numerical
value of the critical point in finite-size systems. However, in
this paper, we mainly focus on the universal behavior of the
critical exponents in the thermodynamic limit, thereby ignor-
ing the term arising from the fluctuation effect. The fluctua-
tion effect can change the critical point as studied in �13�.
Once the amplitude r̄i and the phase �̄i of the local field are
determined, one can solve Eq. �8� easily. The local field r̄i is
determined in a self-consistent manner.

We consider the probability density �i
�s��� ���d� that the

phase of an oscillator i with natural frequency � lies between
� and �+d� in the steady state �14�. Using a previous result
�14� that �i

�s��� ���d� is inversely proportional to the speed
of �, one can obtain that

�i
�s������ = ��
� − �̄i − sin−1� �

�*,i
�� if ��� � �*,i,

	�2 − �*,i
2

2��� − �*,i sin�� − �̄i��
otherwise, �

�9�

where �*,i=Jr̄iki
�. This result implies that an oscillator i with

natural frequency � has its phase locked at �= �̄i
+sin−1�� /�*,i� and d�i /dt=0 if �����*,i. Otherwise, its
phase drifts with a finite speed, d�i /dt�0. Next, we can
evaluate the order parameter using the stationary probability
density in Eq. �9� as

rei� =
1

N
�

i
�

−�

�

d�g��� � d��i
�s������ei�. �10�

Although r̄i, �̄i, and �i
�s��� ��� can fluctuate over i in the

steady state, we assume here that they depend only on degree
ki. This is a mean-field approximation. In general, the mean-
field approximation is the first step used for studying diverse
phase transition problems in Euclidean space and complex
networks. Particularly, since SF networks are frequently lo-
cally tree like, the mean-field approximation works surpris-
ingly for equilibrium problems such as the Ising model �15�,
the Ising spin-glass model �16�, percolation �17�, and so on.
Also, it yields consistent results with numerical simulations
for dynamic problems �18� at hand when ��3. Based on
such background knowledge, here we invoke the mean-field
approach for our study. Keeping only the degree-dependent
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fluctuations, one can obtain a self-consistent equation for the
local field through Eq. �7� as

r̄�k�ei�̄�k� = �
k�=1

km

P�k��k��
−�

�

d�g����
0

2�

d���s�����,k��ei�,

�11�

where ��s��� �� ,k� is given by the right-hand side of Eq. �9�
with �*�k�=Jr̄�k�k� replacing �*,i. P�k� �k� denotes the prob-
ability that a neighboring vertex of a given vertex with de-
gree k has degree k�, and km is the natural cutoff of degree.
Here, we consider only the case that the network is random
and does not have any type of degree-degree correlation;
then, P�k� �k� can be written as k�Pd�k�� / �k� with �k�
=�kkPd�k�. After that, one can see that both r̄�k� and �̄�k� are
independent of degree k, and therefore, we can drop the k

dependence in r̄ and �̄ from now on.
The last integral of Eq. �11� is evaluated as

�
0

2�

d���s�����,k�ei�

= ei�̄�i��/�*�k�� − i	��/�*�k��2 − 1 �� � �*�k�� ,

i��/�*�k�� + 	1 − ��/�*�k��2, ���� � �*�k�� ,

i��/�*�k�� + i	��/�*�k��2 − 1 �� � − �*�k�� .
�

�12�

The remaining integration in Eq. �11� for ���*�k� and �
��*�k� cancels out due to the fact g���=g�−��. As a result,
only oscillators having frequency within the range �� �
��*�k� contribute to the local field in Eq. �7�. Thus, one
obtains

r̄ = �
k=1

km kPd�k�
�k� �

−�*�k�

�*�k�

d�g���	1 − � �

�*�k�
�2

, �13�

which is the self-consistent equation for r̄. Note that r̄ is
contained in �*�k�=Jr̄k�. After the local field is obtained, the
order parameter in Eqs. �4� or �10� is calculated as

r = �
k=1

km

Pd�k��
−�*�k�

�*�k�

d�g���	1 − � �

�*�k�
�2

. �14�

III. SYNCHRONIZATION TRANSITION

In this section, we solve the self-consistent equation �13�
explicitly and then investigate the behavior of the order pa-
rameter near the critical point via Eq. �14�. To proceed, we
first recall that the degree distribution is given in a closed
form as Pd�k�=k−� /Hkm

� for ��2, where Hkm

� is the general-
ized harmonic number, defined by Hm

q ��k=1
m k−q and km

�N1/��−1�. Substituting g���=e−�2/2 /	2� into Eq. �13�, one
can derive the local field r̄ as

r̄ = �
k=1

km kPd�k�
�k�

�*�k��
−�/2

�/2

d� cos2 �
1

	2�
e−��*�k�sin ��2/2

= �
n=0

� �n − 1/2�!�− 1�nHkm

�−�−2n�−1

n!�n + 1�!2n+3/2Hkm

�−1 �Jr̄�2n+1

� �
n=0

�

Ān�Jr̄�2n+1, �15�

where we used the Taylor expansion of e−��*�k�sin ��2/2 and the
integration
�−�/2

�/2 d� cos2 � sin2n �=�1/2�n−1/2�! / �2�n+1�!�. Similarly,
the order parameter is evaluated as

r = �
n=0

� �n − 1/2�!�− 1�nHkm

�−�−2n�

2n+3/2n!�n + 1�!Hkm

� �Jr̄�2n+1 � �
n=0

�

An�Jr̄�2n+1.

�16�

If ��0, the generalized harmonic numbers in Ān and An
are finite, and then they can be represented in terms of the
Riemann � functions for all n below and they are denoted as

B̄n and Bn, respectively: That is,

Ān 
 B̄n =
�n − 1/2�!�− 1�n��� − � − 2n� − 1�

2n+3/2n!�n + 1�!��� − 1�
�17�

and

An 
 Bn =
�n − 1/2�!�− 1�n��� − � − 2n��

2n+3/2n!�n + 1�!����
, �18�

respectively. Using these formulas, the local field and the
order parameter are determined by Eqs. �15� and �16�. On the
other hand, the generalized harmonic number Hm

q in general
diverges when 0�q�1 as Hm

q ��m+1�1−q / �1−q�+��q�
+O�m−q� in the m→� limit, which is shown in the Appen-
dix. Here q is an index and represents q=�−�−2n�−1 in
Eq. �15�, for example.

Equations �15� and �16� are divided into analytic and sin-
gular parts as

r̄ = �
n

B̄n�Jr̄�2n+1 + C̄�Jr̄km
���Jr̄���−2�/� �19�

and

r = �
n

Bn�Jr̄�2n+1 + C�Jr̄km
���Jr̄���−1�/�, �20�

respectively, where the functions C̄�x� and C�x� are defined
in the Appendix. In the x→� limit corresponding to the

thermodynamic limit, C̄�x� and C�x� reduce to C̄� and C�,
respectively, defined as

SYNCHRONIZATION TRANSITION OF… PHYSICAL REVIEW E 75, 011104 �2007�

011104-3



C̄� =
��� − 2� − 2�/2��!��2 − � − ��/2��!

�2��+4�−2�/2���� + � − 2�/2��!��� − 1�
,

C� =
��� − 2� − 1�/2��!��1 − � − ��/2��!
�2��+4�−1�/2���� + � − 1�/2��!����

. �21�

Thus, the local field and the order parameter are written as

r̄ = �
n=0

�

B̄n�Jr̄�2n+1 + C̄��Jr̄���−2�/� + ¯ �22�

and

r = �
n=0

�

Bn�Jr̄�2n+1 + C��Jr̄���−1�/� + ¯ , �23�

for Jr̄km
� 
1. We remark that the singular terms appear only

in the limit Jr̄km
� →�. For the case of Jr̄km

� �1, however,
Eqs. �15� and �16� are valid.

Next, we determine the critical point. To proceed, we in-
vestigate the behavior of the local field as a function of J,
which depends on the sign of �.

�i� In the case of ��0, Ān and An are finite. One can see

from Eq. �15� that the local field is zero for Ā0J�1 and

nonzero for Ā0J�1. The order parameter behaves in the
same manner as that of the local field from Eq. �16�. Thus,
we obtain the critical point as

Jc =
1

Ā0

= J0

Hkm

�−1

Hkm

�−1−� , �24�

where J0=2	2/	�. This formula can be written in another
form as

Jc = J0
�k�

�k1+��
. �25�

As �→�, the critical point Jc approaches J0�1.60 in the
limit N→�, which is consistent with that found in the case
of the globally coupled oscillators �10�.

When J�Jc, the local field r̄ and the order parameter r
are nonzero. When J is close to Jc,

r̄ � ��Ā1�Jc
3�−1/2
1/2 �26�

and

r � A0��Ā1�Jc�−1/2
1/2, �27�

where 
= �J−Jc� /Jc. Thus, we obtain that �=1/2. Again,
this result is consistent with the one obtained from the glo-
bally coupled oscillators �10�.

�ii� In the case of ��0, the singular terms in Eqs. �22�
and �23� can be crucial in determining the critical point and
the order parameter. Depending on relative magnitude of �
and �, we divide the case of ��0 into four subcases:

�I� When 0��� ��−2� /3 �i.e., ��3�+2�, r̄� B̄0Jr̄

+ B̄1J3r̄3+¯ for small r̄ from Eq. �22�. Then Jc and r̄ behave
as those for ��0 presented in Eqs. �24� and �26�.

�II� When ��−2� /3����−2 �i.e., �+2���3�+2�,
the dominant contribution is made from the singular term of
Eq. �22�. Then

r̄ � B̄0Jr̄ + C̄��Jr̄���−2�/� + ¯ , �28�

leading to

Jc � 1/B̄0 = J0
��� − 1�

��� − � − 1�
�29�

and

r̄ � r � 
�/��−2−��. �30�

�III� When �−2����−1 �i.e., �+1����+2�, the
critical point in Eq. �24� for finite N behaves as

Jc � km
−��−�+2� � N−��−�+2�/��−1�. �31�

Thus, it approaches zero in the thermodynamic limit. r̄ is
always positive unless J is zero as r̄�J��−2�/��−�+2� for small
J and r�Jr̄�J�/��−�+2�.

�IV� When ���−1 �i.e., ���+1�, we obtain that r
��Jr̄���−1�/�. Using the result of r̄ obtained in �III�, we obtain
that

r � J��−1�/��−�+2�. �32�

We summarize the result as follows: When ���−2 �in
the �I� and �II� cases�, the critical point Jc is finite; however,
when ���−2 �in the �III� and �IV� cases�, Jc=0 in the
thermodynamic limit N→�. Thus, the critical exponent �
associated with the order parameter is defined through the
relation, r�
� �r�J�� for the former �latter� case. The ex-
ponent � is evaluated in each case as follows:

� = �
1/2 in �I� ,

�/�� − 2 − �� in �II� ,

�/�� − � + 2� in �III� ,

�� − 1�/�� − � + 2� in �IV� .
� �33�

Our result implies that the nature of the synchronization
transition depends on the parameter � controlling the cou-
pling strength. This is counterintuitive from the perspective
of the traditional concept of universality in critical phenom-
enon theory. The critical point Jc also depends on the param-
eter � as shown explicitly in Eq. �25�. This is a generaliza-
tion of the previous one with �=1, Jc=J0�k� / �k2�, derived in
�11–13�. This is also closely related to the percolation thresh-
old �17� in complex networks. Moreover, the result �=1/2
for �=1 and ��5 is reduced to the mean-field result in
Euclidean space.

IV. CLUSTER FORMATION OF SYNCHRONIZED
OSCILLATORS

In this section, we investigate in detail how the coupled
oscillator system develops its synchrony as the coupling
strength increases. To this end, we study the formation of
clusters comprising synchronized vertices as a function of
the coupling strength J. We use the generating function ap-
proach to derive the cluster-size distribution.
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A. Cooperative versus background synchrony

The order parameter averaged over the natural frequency
distribution g��� can be written as

r =
1

N	�
i

�cos2 �i + sin2 �i� + �
i

�
j�i

�cos��i − � j��

�34�

from Eq. �4�. Here, the angular brackets represent the aver-
age over g���. For the case of J=0, each element oscillates
independently, so that �cos��i−� j��=0 for i� j. Thus, the
order parameter is evaluated as

rJ=0 �
1

	N
. �35�

As J increases, clusters comprising synchronized oscilla-
tors are more likely to form. We here define a cluster as a
group of vertices �or oscillators� which are connected and in
the same coherent state: Two oscillators are regarded as be-
ing coherent if its time-average correlation function Cij, de-
fined as

Cij =
1

�t1 − t0� �
t=t0+1

t1

�cos��i�t� − � j�t��� , �36�

is larger than a preassigned threshold value C. Such con-
nected and coherent vertices form a cluster. When C is cho-
sen as C
1 �0�, average cluster size becomes small �large�.
We find that there exists a critical value Cth at Jc, by which
the cluster-size distribution follows a power law. As such
clusters form, the term of �i� j�i�cos��i−� j�� becomes non-
zero. The order parameter is then evaluated as

r �
	�

�

s�
2

N
, �37�

where � is the index of cluster and s� is the size of cluster
�—i.e., the number of vertices within the cluster �. Note that

��s�=N and Eq. �37� reduces to Eq. �35� when J=0 because
each cluster size is 1. When J�Jc, the size of the largest
cluster, denoted as S, is dominant and ��s�

2 
S2, and thus the
order parameter is approximately given as

r � S/N . �38�

It is noteworthy that the parameter 1−C may be seen as the
occupation probability pperc in percolation theory. Thus, for
C�Cth �C�Cth�, the cluster-size distribution shows a sub-
critical �critical� behavior and, at Cth, it shows the critical
behavior. This is shown in Figs. 1�a�–1�c� where the cluster-
size distributions for various values of C are shown at J
=Jc
1.53 for a network with parameters shown in the figure
caption. One may wonder the logic of finding Cth. Unfortu-
nately, we cannot determine Cth analytically; however, it is
important to notice that such a critical point exists indeed
and can be found numerically as shown in Fig. 1�b�. This is
analogous to finding the percolation threshold as the value of
pperc where the cluster-size distribution follows a power law,
rather than the value where the order parameter of the per-
colation transition becomes nonzero. Cth depends on J. Here,
however, since we are mainly interested in the asymptotic
behavior of the cluster-size distribution at the critical point
Jc, we find Cth numerically at Jc only.

Next, we study the cluster-size distribution as a function
of J with the given Cth determined at Jc. For small J�Jc �for
large J�Jc�, the cluster-size distribution shows a subcritical
�supercritical� behavior. The exponent 	 describing the
power-law behavior at J=Jc depends on the parameters �
and �. We determine 	 using the generating function method
in the next subsection.

B. Generating function of the cluster-size distribution

The probability that a vertex belongs to a cluster with size
s is given by sn�s� /N, which is denoted as p�s�. Invoking
percolation theory, p�s� follows a power law with an expo-
nential cutoff,

FIG. 1. �Color online� The size distributions n�s� of synchronized clusters for the networks generated with �=4.0, �=0.0, and N
=3000 at J=Jc. Two neighboring vertices are regarded as being coherent when Cij defined in Eq. �36� is larger than C. C is taken as 0.670
���, 0.680 ���, 0.690 ���, and 0.700 ��� in �a�. Those values of C are larger than the critical value Cth
0.663, which is taken in �b�. In
�c�, C is taken as being smaller than Cth as 0.640 ���, 0.645 ���, 0.650 ���, and 0.655 ���. The data in �a�, �b�, and �c� show subcritical,
critical, and supercritical behaviors, respectively. Solid lines drawn for reference have a slope of 7/3 for all.
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p�s� � s1−	e−s/sc, �39�

where sc is the characteristic size, which depends on J and
system size N. In the thermodynamic limit N→�, sc di-
verges at J=Jc. As in the percolation theory, the generating
function P�z���sp�s�zs is useful for studying structural fea-
ture of the synchronized clusters, since its singular behavior
is related to the critical behavior of the synchronization
transition. �i� The order parameter r�S /N can be obtained
from the relation r� limN→��1−P�zN

* ��, where P�zN
* �

=�s�Sp�s�—i.e., the contribution by finite-size clusters. This
can be achieved by choosing zN

* 
e−1/Sm, where Sm is a clus-
ter size smaller than the largest cluster but larger the second
largest cluster. �ii� From Eq. �39�, one can find that P�z�
diverges for z�zc=lims→�p�s�−1/s—i.e., zc
e1/sc. Thus, at
J=Jc, P�z���1−z�	−2 as z→zc=1 in the thermodynamic
limit. Thus, finding the singularity of P�z� enables one to
obtain p�s�.

For this purpose, we introduce another generating func-
tion P�z� as a partner of the local field r̄. From P�z�, one can
define a probability p̄�s� via the relation P�z���sp̄�s�zs,
where p̄�s� is defined similarly to p�s� as the probability that
a vertex belongs to a synchronized cluster of size s com-
posed of the vertex and s−1 neighboring vertices. For finite
N, the generating function P�z� is analytic for �z � �1 and so
is its inverse function P−1�z�. To investigate the singularity
of P�z� near z=1, we consider the expansion of the inverse
function z=P−1���=1−�n�1bn�1−��n around �=1. The co-
efficient bn depends on J. Using Eqs. �15� and �22� and re-
placing r̄ by 1−�, we can find that the generating function
P�z� satisfies the self-consistent relations

z = P̄�z� + �
n=0

�

B̄n�J†1 − P̄�z�‡�2n+1

+ C̄��J�1 − P̄�z�����−2�/� + ¯ , �40�

for J(1−P�z�)km
� 
1, and

z = P̄�z� + �
n=0

�

Ān�J�1 − P̄�z���2n+1, �41�

for J(1−P�z�)km
� �1. Similarly, P�z� is determined as

z − P�z� = �
n=0

�

Bn�J�1 − P̄�z���2n+1 + C��J�1 − P̄�z�����−1�/�

+ ¯ , �42�

for J�1−P�z��km
� 
1, and

z − P�z� = �
n=0

�

An�J�1 − P̄�z���2n+1, �43�

for J�1−P�z��km
� �1.

C. Behavior of p„s… at the critical point

Here, we calculate the probability p�s� to find a vertex in
the s-size cluster at the critical point J=Jc explicitly in each
case defined in Sec. III.

In case (I), since �� ��−2� /3, we obtain that z=1

+ B̄1�Jc�1−P�z���3+¯ to leading order by expanding z
=P−1��� around �=1 in either Eq. �40� or �41�. Thus, we
obtain that 1−P�z���1−z�1/3, leading to

p̄�s� � s−4/3 �44�

for large s.
Using the obtained leading behaviors of P�z� around z

=1 in Eqs. �42� and �43�, one obtains the behavior of P�z�
around z=1 as 1−P�z���1−z�1/3: thus,

p�s� � s−4/3. �45�

In case (II), the singular term in Eq. �40� is relevant. In
this case, the behavior of P�z� for z�zc differs from that for
z�zc. zc is determined by the criterion J�1−P�zc��km

� �1.
This case also happens for cases �III� and �IV�.

In this case, the singular term C̄��Jc�1−P�z�����−2�/� is
dominant in Eq. �40�; therefore, it follows that 1−P�z�
�Jc

−1�1−z��/��−2� at J=Jc, which is valid for z
zc. From this
result, p̄�s� is obtained as

p̄�s� � Jc
−1s−��+�−2�/��−2�, �46�

which is valid for s�sc.

On the other hand, when J�1− P̄�z��km
� �1 so that

�Ān+1 / Ān��J(1− P̄�z�)�2�1, one can obtain that 1−P�z�
�Jc

−1�Ā1�−1/3�1−z�1/3 for z�zc; therefore,

p̄�s� � Jc
−1km

��−2�/3−�s−4/3 �47�

for large s
sc. sc is evaluated as follows: Substituting the
result of 1−P�z� in the criterion Jc�1−P�zc��km

� �1 and us-
ing �1−zc��sc

−1, one can obtain a system-size dependence of
the characteristic size sc explicitly as

sc � km
�−2 � N��−2�/��−1�, �48�

which diverges as N→� when ��2.
Together with Eqs. �46� and �47�, we obtain that

p̄�s� � �s−��+�−2�/��−2� �s � sc� ,

km
��−2�/3−�s−4/3 �s 
 sc� .

� �49�

Next, using the result of 1−P�z��1−P�z� obtained from
both Eqs. �42� and �43�, one can find that p�s� behaves simi-
larly to p̄�s�: that is,

p�s� � �s−��+�−2�/��−2� �s � sc� ,

km
��−2�/3−�s−4/3 �s 
 sc� .

� �50�

In case (III), the critical point Jc is finite in finite-size
systems as being of order Jc�km

�−2−��N��−2−��/��−1�. Plug-
ging the N dependence into Eq. �47� and the expression 1

−P�z��1−z+ C̄��Jc�1−z����−2�/� for s�sc from Eq. �40�,
one obtains p̄�s� as follows:

p̄�s� � �km
��−2−����−2�/�s−��−2+��/� �s � sc� ,

km
−2��−2�/3s−4/3 �s 
 sc� .

� �51�
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Next, we derive p�s�. We find that the leading singular
term in P�z� for the case 1−z
sc

−1�km
2−� shows up in two

ways. Substituting 1−P�z�
1−z+ C̄��Jc�1−z����−2�/� into

Eq. �42�, we obtain that 1−P�z�
B0Jc�1−z�+B0JcC̄��Jc�1
−z����−2�/�+C��Jc�1−z����−1�/�+¯. We compare the second
with the third terms in order of magnitude. Using the fact
that Jc�km

�−2−�, we find that there exist two subcases for s

�sc. The second term B0JcC̄��Jc�1−z����−2�/� is more domi-
nant than the third term C��Jc�1−z����−1�/� when 1−z�s*

−1

and vice versa. Here, it is found that a new crossover size s*
scales as

s* � km
��−1���−�+2�. �52�

From the behaviors of P�z� in the three different subcases,
we obtain the probability p�s� as

p�s� � �km
��−1���−2−��/�s−��−1+��/� �s � s*� ,

km
��−2−����−2+��/�s−��−2+��/� �s* � s � sc� ,

km
��−2�/3−�s−4/3 �s 
 sc� .

�
�53�

One can notice that the subcase s�s* diminishes when �
�1, but it is extended as the parameter � increases.

In case (IV), the third term C��Jc�1−z����−1�/� in 1−P�z�
in case �III� is always dominant when 1−z
sc

−1. Moreover,
A0 in Eq. �43� diverges as A0�km

�−�+1, which has to be con-

sidered in the relation 1− P̄�z��AiJc(1− P̄�z�) for 1−z�sc
−1.

Consequently, p�s� behaves as

p�s� � �km
��−1���−2−��/�s−��−1+��/� �s � sc� ,

km
�1−2��/3s−4/3 �s 
 sc� .

� �54�

To substantiate the predictions of this section, we investi-
gate the asymptotic behavior of p�s� in a numerical manner.
The static model introduced in �19� is used for the underly-
ing network in our simulations. The network has N=3000
oscillators and its mean degree �k� is 4.0. The values of �

and � are chosen as 4.0 and 0.0, respectively. This pair be-
longs to case �I�. First, we simulate the system at J=Jc to
determine Cth defined in Sec. IV A. During the simulation,
we assume a large value of Cth and then collect the pairs of
vertices where the Cij of each pair is larger than the assumed
Cth. After that, we determine clusters and obtain the cluster-
size distribution. We then adjust Cth by somewhat decreasing
or increasing it and repeat these procedures until the power-
law distribution appears in the cluster-size distribution. If the
cluster-size distribution follows the power-law form of n�s�
�s−	, the corresponding value of Cth is considered as the
threshold value Cth. It is found numerically that Cth
0.66,
independent of the system size N. In our simulations, we
obtain 	
7/3, which is close to the theoretical value in Eq.
�45�, as shown in Fig. 1�b�.

V. LARGEST CLUSTER SIZE AND FINITE-SIZE SCALING

In this section, we first investigate the N dependence of
the largest cluster size at Jc. Next, based on this result, we

derive a finite-size scaling form for the order parameter near
Jc.

A. Largest cluster size

The largest cluster size S can be obtained from the rela-
tion

�
s�S

p�s� �
S

N
. �55�

In case (I), we use the result of Eq. �45� and obtain simply
that

S � N3/4. �56�

In case (II), p�s� displays a crossover at sc, and thus the
obtained value of the largest cluster size must satisfy the
self-consistency conditions. For instance, the largest cluster
size obtained by Eq. �55� for s�sc in Eq. �50� has to be
smaller than sc. As a result, the largest cluster size behaves
differently in the two subcases ��1 and ��1, which we
denote �IIa� and �IIb�, respectively. In each subcase, we ob-
tain that

S � �N�4�−5−3��/�4��−1�� in �IIa� ,

N��−2�/��−2+�� in �IIb� .
� �57�

The largest cluster size S in �IIa� was determined from p�s�
for s
sc and is indeed much larger than sc, whereas it in
�IIb� was done from p�s� for s�sc.

In case (III), p�s� exhibits three distinct power-law behav-
iors. Thus, this case is divided into three subcases. They are
as follows: ��1 �IIIa�, 1���	�2−3�+3 �IIIb�, and �
�	�2−3�+3 �IIIc�. The largest cluster size in each subcase
is given as

S � �N�4�−5−3��/�4��−1�� in �IIIa� ,

N�/��−2+��+��−2−��/��−1� in �IIIb� ,

N��−2�/��−1+�� in �IIIc� .
� �58�

In case (IV), the largest cluster size is determined simply
by p�s� for s�sc since the resulting largest cluster size ful-
fills the criterion S�sc for ��0: thus,

S � N��−2�/��−1+��. �59�

FIG. 2. �Color online� Diagram in the space of �� ,�� of eight
different domains, each corresponding to a distinct synchronization
transition. The transition nature of each domain is listed in Table I.
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B. Finite-size scaling

Here, we evaluate the magnitude of the order parameter rc
at Jc and establish the finite-size scaling function. To pro-
ceed, we compare the magnitude of cooperative synchrony
S /N with that of the background synchrony �N−1/2. The or-
der parameter rc is defined as �S /N if S /N
N−1/2 and
�N−1/2 otherwise. Under this criterion, we obtain rc as

�S /N in cases �I� and �II� and �N−1/2 in cases �IIIb�, �IIIc�,
and �IV�. Case �IIIa� is divided into two subcases 2�−3�
−3� ���0. They are denoted as �IIIa1� and �IIIa2�, respec-
tively. The order parameter rc behaves as �S /N and �N−1/2

in �IIIa1� and �IIIa2�, respectively.
By using that r�
� and N-dependent behavior of rc at Jc,

we can construct a finite-size scaling form as

TABLE I. The probability to find a vertex in s-size cluster p�s�, the critical exponents � and �, and the largest cluster size S at the critical
point for the eight cases shown in Fig. 2.

domain p�s� � � S

�I� s−4/3 1

2
2 N3/4

�II� �s−��+�−2�/��−2� �s�sc�,

km
��−2�/3−�s−4/3 �s
sc� � �

�−2−�

�

1+3�

4��−1�

�−2−�

�IIa�

�−2+�

�−2−�

�IIb�

N�4�−5−3��/�4��−1��

�IIa�

N��−2�/��−2+��

�IIb�

�III� �km
��−1���−2−��/�s−��−1+��/� �s�s*�

km
��−2−����−2+��/�s−��−2+��/� �s*�s�sc�

km
��−2�/3−�s−4/3 �s
sc�.

� �

�−�+2

�

1+3�

4��−1�

�−�+2
�IIIa1�

2�

�−�+2
�IIIa2 , IIIb, IIIc�

N�4�−5−3��/�4��−1��

�IIIa1 , IIIa2�

N�/��−2+��+��−2−��/��−1�

�IIIb�

N��−2�/��−1+��

�IIIc�

�IV� �km
��−1���−2−��/�s−��−1+��/� �s�sc�

km
�1−2��/3s−4/3 �s
sc�. � �−1

�−�+2

2��−1�

�−�+2
N��−2�/��−1+��

TABLE II. Numerical values of the parameters �� ,�� we used for Fig. 3. �t and �t are theoretical values for a given set of �� ,�� in the
third column. �n and �n are numerical values to draw Fig. 3 for each case. For �a�-�c�, the theoretical and numerical values are the same each
other for both � and �. However, they can be different for �d�-�h�. rt and rn are the order parameters in scaling form formulated with the
theoretical values of �t and �t and the numerical values �n and �n, respectively.

Fig. 3 domain �� ,�� �t �n �t �n rt rn

�a� �I� �1/3 ,4� 1/2 1/2 2 2 N−1/4��
N1/2� N−1/4��
N1/2�
�b� �IIa� �5/6 ,4� 5/7 5/7 120/49 120/49 N−7/24��
N49/120� N−7/24��
N49/120�
�c� �IIb� �4/3 ,4� 2 2 5 5 N−2/5��
N1/5� N−2/5��
N1/5�
�d� �IIIa1� �1/3 ,13/6� 2 20/7 14/3 20/3 N−3/7��JN3/14� N−3/7��JN3/20�
�e� �IIIa2� �2/3 ,13/6� 4/3 50/23 8/3 100/23 N−1/2��JN3/8� N−1/2��JN23/100�
�f� �IIIb� �5/2 ,4� 5 5 10 10 N−1/2��JN1/10� N−1/2��JN1/10�
�g� �IIIc� �11/4 ,4� 11/3 11/3 22/3 22/3 N−1/2��JN3/22� N−1/2��JN3/22�
�h� �IV� �4,4� 3/2 5 3 10 N−1/2��JN1/3� N−1/2��JN1/10�
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r = N−�/���
N1/�� �60�

for cases �I� and �II� and

r = N−�/���JN1/�� �61�

for cases �III� and �IV�, where

��x� � �const for x � 1,

x� for x 
 1.
� �62�

The critical exponent � is determined by the relation rc
�N−�/�. The value of � varies depending on the cases de-
termined by the magnitude of � and �.

We present the diagram in Fig. 2 comprising eight distinct
cases in the �� ,�� plane. Each case in the diagram corre-
sponds to a distinct behavior of the critical exponents � and
�, the cluster-size distribution, and the largest cluster size.
We summarize those features in Table I.

VI. NUMERICAL SIMULATIONS

We perform direct numerical integration of Eq. �2� to con-
firm the analytic results. In particular, the finite-size scaling
behaviors in Eqs. �60� and �61� are compared. For this pur-
pose, we generate random SF networks using the static
model �19� with system sizes of N=400, 800, 1600, and
3200, mean degree of �k�=4.0, and values of � and � chosen
from each domain in Fig. 2. The numerical values of �� ,��
we used are listed in Table II. For the numerical integration,
we apply Heun’s method �20�. Time is discretized by a unit
step �t=0.005 and runs up to t=1.2�104. An ensemble av-

erage is taken over O�102��O�103� different configurations
of natural frequencies and network realizations, respectively.

Numerical results are presented in Fig. 3. For each Figure
3�a�–3�c�, the critical point Jc is finite. We find Jc numeri-
cally to make the obtained numerical data collapsed for dif-
ferent system size N in the scaling plot with theoretical val-
ues of � and �. The theoretical and numerically found values
of Jc, denoted as Jc

�t� and Jc
�n�, respectively, are compared as

�Jc
�t� ,Jc

�n��
�0.92,1.32� for �a�, �0.37, 0.50� for �b�, and
�0.13, 0.18� for �c�. They belong to cases �I�, �IIa�, and �IIb�,
respectively. The theoretical values were obtained by using
Eq. �25�. However, when the generalized harmonic numbers
Hkm

�−1 and Hkm

�−1−� in Eq. �24� or the zeta functions ���−1� and
���−�−1� in Eq. �29� are used, the critical points are
changed as Jc

�t�
1.49 �a�, 1.27 �b�, and 0.90 �c�. The critical
point is a nonuniversal quantity and sensitive to the method
one uses, which was noticed in �13�. On the other hand, the
discrepancy between the numerical value and the mean-field
solution for the critical point was encountered in another
problem. For example, Dorogovtsev et al. �15� studied the
Ising model on a Cayley-tree-type structure and obtained an
analytic solution of the critical point, which turned out to be
larger than the mean-field solution, but closer to the numeri-
cal value.

For Figs. 3�d�–3�h�, the critical point Jc is zero. For the
cases of �d�, �e�, and �h�, we find that numerical data do not
collapse well in the scaling plot of rN�/� versus JN1/� with
theoretical values of �t and �t tabulated in Table I. Instead,
we adjust the numerical values of �n and �n values empiri-
cally to make the obtained numerical data collapsed. Those
empirical values of �n and �n are compared with the theo-

FIG. 3. �Color online� Finite-size scaling behaviors of the order parameter r. Data are collected from the static network model with mean
degree �k�=4 and system sizes N=400 ���, 800 ���, 1600 ���, and 3200 ���. Numerical values of the tunable parameters �� ,�� and the
critical exponents are given in Table II for each case. For the critical point Jc, theoretical Jc

�t�, and numerical Jc
�n� values used in �a�–�c� are

different as �Jc
�t� ,Jc

�n��= �0.92,1.32� �a�, �0.37,0.50� �b�, and �0.13,0.18� �c�.
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retical values as listed in Table II. The discrepancy in �d� and
�e� originates from the presence of intrinsic degree-degree
correlation in the static model when the degree exponent 2
���3, while the theoretical values were obtained under the
assumption that the degree-degree correlation is absent.

VII. CONCLUSIONS AND DISCUSSION

In this paper, we have investigated the nature of the syn-
chronization transition generated by N limit-cycle oscillators
located at random SF networks with degree exponent �. The
dynamics is given by a modified Kuramoto equation with the
asymmetric and degree-dependent weighted coupling
strength in the form of Jki

1−�, where ki is the degree of vertex
i. Depending on the sign and magnitude of �, the influence
of the hub vertices on the dynamics can be moderated or
amplified and determines the nature of the synchronization
transition. Applying the mean-field approach to the modified
Kuramoto equation, we derived the critical point, the size
distribution of synchronized clusters, and the largest cluster
size at the critical point. The critical exponents associated
with the order parameter and the finite-size scaling are deter-
mined in terms of the two tunable parameters �� ,��. All
results are summarized in Table. I. The parameter space of
�� ,�� is divided into eight different domains, in each of
which the transition nature is distinct.

It would be interesting to notice that the critical exponents
� and � associated with the order parameter and the finite-
size scaling of the synchronization transition depend on the
parameter � used to control the coupling strength. The result
is unusual from the perspective of the universality in the
critical phenomena in regular lattices where the details of the
couplings are mostly irrelevant unless they are long ranged
�21�. When the coupling constant depends on a strength of
the long-ranged interaction in Euclidean space, the critical
exponent can depend on the exponent controlling that
strength, which is reminiscent of our result. Another impli-
cation of our result is that in scale-free networks where a
long-ranged interaction is naturally involved, structural fea-
tures of SF networks such as the degree distribution are not
sufficient to understand the dynamic process in SF networks.
As we have shown in this paper, asymmetric coupling in
dynamics is a relevant perturbation in such networks due to
the heterogeneity of the degree distribution. Such a behavior
was also observed in the sandpile model �22�. The relevance
of the asymmetric coupling could be used in other subjects—
for example, improving the transport of data packet in the
Internet �23� and enhancing the biomass product in meta-
bolic networks �24�, and so on.
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APPENDIX: DERIVATION OF EQS. (19) and (20)

In this appendix, we present the derivation of Eqs. �19�
and �20� from Eqs. �15� and �16� with ��0. Since the right-
hand side of Eq. �16� becomes the same as that of Eq. �15�
when � is shifted by 1, we here analyze in detail the nature
of Eq. �15� only, which applies also to Eq. �16� with � re-
placed by �+1.

The coefficients in Eq. �15� diverge with increasing N for
n�nc� ���−�−2� / �2���, where �x� is the smallest integer
not smaller than x, due to the divergence of the generalized
harmonic number Hm

q for 0�q�1. While Hm
q ���q� for q

�1, Hm
q diverges in the limit m→� for 0�q�1 and its

asymptotic expansion can be obtained by using the relation
Hm

q =��q�−��q ,m+1� and the asymptotic expansion of the
Hurwitz zeta function �25�

��q,m� =
1

q − 1
m1−q +

1

2
m−q

+ 2m1−q�
0

�

dx
sin�q tan−1 x�

�1 + x2�q/2�e2�mx − 1�
. �A1�

One can see that the integral is of order m−1 in the limit m
→� since

�
0

�

dx
sin�q tan−1 x�

�1 + x2�q/2�e2�mx − 1�
� �

0

1/m

dx
qx

e2�mx − 1

+ �
1/m

�

dx
1

e2�mx − 1

� O�m−2� + O�m−1� , �A2�

and thus for 0�q�1, Hm
q behaves as

Hm
q = �

k=1

m
1

kq �
�m + 1�1−q

1 − q
+ ��q� + O�m−q� . �A3�

When ��0, the terms with such diverging coefficients
exist and thus we can rearrange the expansion as follows:

r̄ = �
n=0

� �n − 1/2�!�− 1�n�Jr̄�2n+1Hkm

�−�−2n�−1

2n+3/2n!�n + 1�!��� − 1�

= �
n=0

�
�n − 1/2�!�− 1�n��� − � − 2�n − 1�

2n+3/2n!�n + 1�!��� − 1�
�Jr̄�2n+1

+ �
n=nc

� �n − 1/2�!�− 1�nkm
2+�+2n�−��Jr̄�2n+1

2n+3/2n!�n + 1�!�2 + � + 2n� − ����� − 1�
�A4�

=�
n=0

�

B̄n�Jr̄�2n+1 + �Jr̄���−2�/�C̄�Jr̄km
�� , �A5�

where we approximated Hkm

�−1 by ���−1� since �−1�1. The

coefficients B̄n are defined in Eq. �17�, and the function C̄�x�
is defined by
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C̄�x� = �
n=nc

�

c̄nx�2+�+2n�−��/�, �A6�

with

c̄n =
�n − 1/2�!�− 1�n

2n+3/2n!�n + 1�!�2 + � + 2n� − ����� − 1�
.

While C̄�x� behaves as x�2+�−�+2�nc�/� for x�1, it converges

to a constant C̄� for x→�, yielding a nonanalytic term

C̄��Jr̄���−2�/� as can be seen in Eq. �22�. Therefore, the mag-
nitude of Jr̄km

n is essential for the determination of the lead-
ing behaviors of the right-hand sides of Eqs. �15� and �16�
for r̄�1. If Jr̄km

� 
1, one can approximate the function

C̄�Jr̄km
�� by a constant C̄� which is evaluated as

C̄� = lim
x→�

�
n=nc

�
�n − 1/2�!�− 1�n2−��+2�−2�/�2��

n!�n + 1�!�2 + � + 2n� − ����� − 1�

� �2−1/2x��2+�+2n�−��/�

=
1

2��+2�−2�/�2����� − 1� �
n=nc

�
�− 1�n�n − 1/2�!

n!�n + 1�!

� �
0

�

dyy1+�+2n�−�

=
��� − 2� − 2�/2��!��2 − � − ��/2��!

�2��+4�−2�/2���� + � − 2�/2��!��� − 1�
. �A7�

The function C�x� defined in the text can be approximated in

the same way by a constant C�, which is identical to C̄� with
�+1 in place of �. Therefore, one should refer to Eqs. �22�
and �23� for the correct expansions of r and r̄ around r̄=0 in
the case of Jr̄km

� 
1 while Eqs. �15� and �16� can be used in
the case of Jr̄km

� �1.
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